1. Введение

Представленный задачник предназначен для студентов физических специальностей, изучающих распространение электромагнитных волн оптического диапазона, оптические характеристики материалов, вопросы волоконной оптики и оптики светодиодов. Предложенные в пособии задачи используются при чтении ряда спецкурсов кафедры оптики, спектроскопии и физики наносистем ("Оптические методы в информатике", "Оптика полупроводников и светодиоды", "Волоконная и интегральная оптика", "Физические основы оптической связи", "Фотоника" и др.) и для итоговых госэкзаменов для бакалавров, специалистов и магистров, обучавшихся на кафедре оптики, спектроскопии и физике наносистем физического факультета МГУ. Задачи учитывают специфику указанных курсов и являются необходимым дополнением к их теоретической части.

Решение предложенных в сборнике задач позволит студентам получать как качественные оценки параметров моделируемых физических процессов, так и численные результаты для конкретных примеров. Навыки решения данных задач по оптике и квантовой электронике необходимы для будущей работы студентовфизиков по специальности.

Приведенные в сборнике задачи могут быть использованы для специальных курсов других кафедр физического факультета и технических университетов РФ.

2. Справочные данные

2.1. Оптические усилители и лазеры-генераторы

Постоянная планка

h=6,626×10⁻³⁴ Дж•с; h=6,626×10⁻²⁷ Эрг×с;

Единицы	измерения	энергии	в оптик
Единицы	измерения	энергии	в оптик

Единица измере- ний	Дж	эрг	к	эВ	Гц	см ⁻¹
Дж	1	10^{7}	$7,24 \cdot 10^{22}$	$6,24 \cdot 10^{18}$	$1,51 \cdot 10^{33}$	$5 \cdot 10^{22}$
эрг	10-7	1	$7,24 \cdot 10^{15}$	$6,24 \cdot 10^{11}$	$1,51 \cdot 10^{26}$	$5 \cdot 10^{15}$
К	$1,38 \cdot 10^{-23}$	$1,38 \cdot 10^{-16}$	1	8,62·10 ⁻⁵	$2,08 \cdot 10^{10}$	0,7
эВ	1,6·10 ⁻¹⁹	$1,6\cdot 10^{-12}$	$1,16.10^4$	1	$2,42 \cdot 10^{14}$	$8,1.10^{3}$
Гц	6,626·10 ⁻³⁴	6,626·10 ⁻²⁷	4,8·10 ⁻¹¹	$4,15\cdot10^{-15}$	1	3,3.10-11
см-1	$2 \cdot 10^{-23}$	2.10^{-16}	1,44	$1,24 \cdot 10^{-4}$	$3 \cdot 10^{10}$	1

1. Отношение населённостей уровней энергии $N_{1,2}$ совокупности рабочих частиц в состоянии термодинамического (теплового) равновесия, описываются формулой Больцмана,

 $g_2 N_2 / g_1 N_1 = \exp[-(E_2 - E_1) / kT] = \exp[-hv_{21} / kT]$

где $g_1 - \phi$ актор вырождения.

В отсутствии вырождения формула Больцмана имеет вид:

 $N_2 / N_1 = \exp[-(E_2 - E_1)/kT] = \exp[-hv_{21}/kT]$

2. В состоянии термодинамического равновесия скорость переходов из состояния 1 в состояние 2 и из состояния 2 в 1 равны

$$w_{\rm IND}N_1=w_{\rm IND}N_2+w_{\rm SP}N_2$$
 ,

где w_{IND} и w_{SP} – вероятности индуцированного и спонтанного излучения соответственно.

3. Эквивалентная спектральная плотность мощности входного шума усилителя

$$S = h v$$
,

4. Спектральная плотность мощности усиленного спонтанного излучения в двух поляризациях приближённо (при больших G)

 $S_{SP}(v) = 2(G-1)n_{SP}hv,$

где n_{SP} – фактор спонтанного излучения,

h=6,6252×10⁻³⁴ Дж·с – постоянная Планка; v – оптическая частота. G – линейный коэффициент усиления по мощности.

5. Мощность усиленного спонтанного излучения в двух поляризациях приближённо (при больших G)

 $P_{SP}(v) = 2(G-1)n_{SP}h v\Delta v_{S},$

где Δv_s – полная ширина на полувысоте (FWHM) спектра. В каждой из двух поляризаций мощность в 2 раза меньше.

6. Фактор спонтанного излучения

В газовых лазерах и легированных кристаллических лазерах

$$\boldsymbol{n}_{SP} = \left[\frac{\boldsymbol{g}_1 \boldsymbol{N}_2}{\boldsymbol{g}_1 \boldsymbol{N}_2 - \boldsymbol{g}_2 \boldsymbol{N}_1}\right],$$

где n_{SP} — фактор спонтанного излучения, g_1 и g_1 — степени вырождения нижнего и верхнего уровней, N_1 и N_1 — их населённости.

В мазерах
$$\eta_{SP} = \left[n_{Ph} + \frac{g_1 N_2}{g_1 N_2 - g_2 N_1} \right]$$
, где $n_{Ph} = \left[\exp \frac{h v}{kT} - 1 \right]^{-1}$ -

среднее число тепловых фотонов в моде. В лазерах n_{Ph} пренебрежимо мало.

В лазерах на стекле, в частности в эрбиевых волоконных лазерах, и в других типах лазеров с широкими полосами усиления

$$n_{SP} = \frac{\sigma_2(\lambda_s)N_2}{\sigma_2 N_2 - \sigma_1 \cdot N_1} \,.$$

7. Формула Шавлова-Таунса

Спектральная плотность мощности (output power spectrum) выходного излучения лазера может быть аппроксимирована лоренцев-

ским профилем, ширина которого (по уровню 0,5 – FWHM) описывается следующей формулой:

$$\Delta v_{ShT} = A_{ShT} \eta_{SP} \frac{\pi h v (\Delta v_c)^2}{P_0},$$

где P_0 – суммарная мощность излучения, покидающего резонатор, включая полезную выходную мощность и мощность, теряемую на внутренних потерях (поглощение, рассеяние и т.д.), hv – энергия фотона, Δv_c – ширина полосы «холодного» резонатора, η_{SP} – фактор спонтанного излучения, зависящий от типа активной среды и частоты излучения, A_{ShT} – параметр, величина которого изменяется от 1 при сильном превышении накачки над порогом, до примерно 2 вблизи порога и ниже порога.

В четырёхуровневых лазерах η_{ShT} =1.

В газовых лазерах и легированных кристаллических лазерах

$$\eta_{ShT} = n_{spont} = \left[\frac{g_1 N_2}{g_1 N_2 - g_2 N_1}\right],$$

где n_{spont} – фактор спонтанного излучения, g_1 и g_1 – степени вырождения нижнего и верхнего уровней, N_1 и N_1 – их населённости.

8. Формула Шавлова-Таунса в полупроводниковых лазерах:

$$\Delta v_{ShT} = A_{ShT} \eta_{SP} \frac{\pi h v (\Delta v_c)^2}{P_0} (1 + \alpha_M),$$

где α_M – коэффициент уширения линии излучения, который связан с возникновением избыточных флуктуаций фазы, вызванных флуктуациями мощности (типичное значение α_M в пределах 5–7).

2.2. Краткий справочник по волоконной оптике

1. Коэффициент потерь:

α(λ=1,55мкм)=0,2 дБ/км

α(λ=1,45мкм)=0,25 дБ/км

Нелинейный коэффициент преломления:

n₂(λ=1,55мкм)=2,8 × 10 ⁻²⁰ м²/Вт

При ВКР частота сигнала сдвинута относительно накачки на ~13 ТГц

Коэффициент спонтанного КР $g_R=10^{-13}$ м/Вт при накачке на $\lambda=1$ мкм, g_R обратно пропорционален длине волны накачки.

При ВРМБ частота сигнала сдвинута относительно накачки ~ на 11 Ггц.

Коэффициент спонтанного ВРМБ $g_B=5 \times 10^{-11}$ м/Вт и не зависит от длины волны накачки.

Электрическая постоянная: $\epsilon_0 = (1/36\pi) \times 10^{-9} \text{ А×с/В×м}$

2. Числовая апертура оптического волокна со ступенчатым профилем показателя преломления: $NA=(n_c^2-n_0^2)^{0.5}$

где n_c и n_0 показатели преломления сердцевины и оболочки, соответственно. Числовая апертура — это синус критического угла ввода излучения в волокно:

NA= $sin\alpha_{max}$

Для световодов таких, где: $n_c\text{-}n_0\text{=}\Delta n\text{<<}n_cn_{0,}$ числовая апертура может быть представлена как:

 $NA = (n_c^2 - n_0^2)^{0.5} = ((n_c - n_0) \times (n_0 - n_c))^{0.5} = (2n \times \Delta n)^{0.5}$

3. Нормализованная частота:

 $V = \alpha k (n_c^2 - n_0^2)^{0.5} = \alpha k N A$,

где α – радиус сердцевины k=2π/λ – волновой вектор V<2,045 для одномодового световода.

4. Нормализованная частота одномодового световода: $V{=}{U_{11}}^2{+}{W_{11}}^2$,

где U_{11} и W_{11} – поперечные волновые числа сердцевины и оболочки, соответственно.

5. Поперечное волновое число сердцевины одномодового слабонаправляющего световода:

$$U_{11}(V) = \frac{U_{01} \times V}{1 + [(U_{01} - 1)^4 + V^4]^{1/4}}$$

где V – нормализованная частота, U₀₁=2,405

6. Постоянная распространения одномодового световода:

$$\beta_{11}^2 = k^2 n_c^2 - \frac{U_{11}^2}{a^2}$$

7. В сплавном соединении двух оптических волокон возникает туннельная связь. Если связь мала, то моды оптических волокон приближенно можно считать совпадающими с модами уединённых волокон, а амплитуды при распространении удовлетворяют следующей системе связанных мод:

$$\frac{dA_1(Z)}{dZ} = -i\beta_1 A_1(Z) - i \Re A_2(Z)$$
$$\frac{dA_2(Z)}{dZ} = -i\beta_2 A_2(Z) - i \Re A_1(Z),$$

где A_1 и A_2 – амплитуды 1 и 2 волн, β_1 и β_2 – их постоянные распространения, α – коэффициент связи двух волн.

Для одинаковых световодов $\beta_1 = \beta_2$ и при начальных условиях $A_1(0)=1$ и $A_2(0) = 0$, интенсивность в световоде, куда введён свет, изменяется по закону **cos**²æZ а в соседнем световоде по закону **sin**²æZ.

8. Коэффициент связи двух волн:

$$\mathbf{a} = 2 \frac{\frac{U_{11}^2}{a^2} \times \frac{W_{11}}{a} \times e^{-\frac{W_{11}}{1}s}}{\beta_{11} \times 2a(\frac{U_{11}^2}{a^2} + \frac{W_{11}^2}{a^2})}, \text{ где}$$

а – радиус сердцевины световода,

S – расстояние между краями сердцевины двух световодов,

β₁₁ – постоянная распространения одномодового световода,

U₁₁ и W₁₁ – поперечные волновые числа сердцевины и оболочки, соответственно.

9. Рассматривая два связанных световода как одну систему, имеем в ней две супермоды: симметричную и антисимметричную, которые имеют разные постоянные распространения и, следовательно, разные фазовые скорости. В симметричной моде знаки амплитуд в двух световодах совпадают и противоположны в антисимметричной.

В случае фазового синхронизма (световоды одинаковы), модули амплитуд также одинаковы и равны А. Пусть фазы мод в световоде 1 совпадают и противоположны в световоде 2. В этом случае в световоде 1 суммарная амплитуда равна 2А, а в световоде 2 – 0.

На расстоянии Z, таком что $\Delta\beta Z = \pi$,

относительные фазы мод также изменятся на π.

 $\Delta\beta$ – разность постоянных распространения симметричной и антисимметричной моды

При этом уже в световоде 1 суммарная амплитуда будет равна 0, а в световоде 2 – 2А. Это соответствует перетеканию света из световода 1 в световод 2.

10. При $\Delta\beta = \frac{\sqrt{3} \times \pi}{L}$ свет перестаёт перетекать из канала 1 в канал

2, что следует из решения системы уравнений из п. 7.

Δβ=β₁-β₂ – разность постоянных распространений в 1 и 2 каналах. Отсюда изменение эффективного показателя преломления

$$\Delta n_{_{\mathcal{P}}} = \frac{\sqrt{3} \times \pi}{k \times L} \,.$$

11. Величина
$$\Delta n_{2} = \frac{n^{3} \times r \times V}{2 \times t_{m}}$$
,

"где t_m – толщина модулятора, V – приложенное напряжение, n – показатель преломления модулятора, r – коэффициент, определяющий линейный электростатический эффект Поккельса.

12. В оболочке изменение поля по радиусу г определяется функцией Макдональда, которая приближённо может быть заменена на экспоненциальную функцию $e^{-\frac{W_{11}}{a}r}$.

13. Дисперсионная длина L_D

$$L_d = \frac{\tau_0^2}{\begin{vmatrix} d^2 \beta \\ d\omega^2 \end{vmatrix}}$$

τ₀ – начальная длительность импульса,

 $\frac{d^2\beta}{d\omega^2}$ – параметр дисперсии второго порядка.

На расстоянии L_D длительность импульса возрастает в $\sqrt{2}$ раз. Длительность импульса на расстоянии Z определяется выражени-

em $\tau_Z^2 = \tau_0^2 \left[1 + \left(\frac{Z}{L_D} \right)^2 \right].$

14. Нелинейная длина $L_{_{HR}} = \frac{1}{\gamma P_0}$. Это длина, на которой ширина

спектра возрастает примерно в 2 раза, где P_0 – мощность импульса,

$$\gamma = \frac{n_2 \times \omega}{c \times S}$$
, где γ – нелинейный параметр,

ω – частота, с – скорость света,

S – площадь моды,

n₂ – нелинейный коэффициент преломления.

15. Соотношение

$$N^{2} = \frac{\tau_{0}^{2} \times \gamma P_{0}}{\left| \frac{d^{2} \beta}{d\omega^{2}} \right|} = 1$$

выражает равенство дисперсионной и нелинейной длин.

В случае аномальной дисперсии $\frac{d^2\beta}{d\omega^2} < 0$

и $\lambda > 1,3$ мкм для кварцевых световодов возникает фундаментальный солитон.

16. При амплитудно-кодовой модуляции скорость передачи информации

$$B=\frac{1}{2\tau_{Z_{i}}}$$

где τ_Z – длительность импульса на конце световолоконной линии связи.

17.
$$\Pi = -10 \log \frac{P_{ebax}}{P_{ex}}$$

где Π – потери в линии в дБ,
 P_{Bx} – мощность на входе,
 $P_{Bbix} - мощность на выходе,$
 $P_{Bbix} = P_{Bx} \times e^{-\alpha L}$
 $\alpha = 0,23 \times \frac{\Pi}{L}$.

18. Коэффициент ненасыщенного усиления G_R в случае вынужденного комбинационного рассеяния равен

$$G_{R} = \exp\left[g_{R}(\lambda_{curh}) \times P_{\mu\alpha\kappa} \times \frac{L_{s\phi\phi}}{S}\right]$$

где $g_R(\lambda_{\mbox{сигн}})$ — коэффициент спонтанного комбинационного рассеяния,

*P*_{нак} – мощность накачки,

S – площадь моды,

L_{эфф} – эффективная длина усиления,

$L_{a\phi\phi} = \frac{1}{\alpha_{\text{max}}} [1 - exp(-\alpha_{\text{max}}L)]$

α_{нак}- коэффициент потерь на длине волны накачки.

19. Критическая мощность Р_{кр} возникновения ВКР из шумов рассчитывается на основании выражения

$$\frac{g_R(\lambda_{\text{CMFR}}) \times P_{\text{KP}} \times L_{\Rightarrow \Phi \Phi}}{S} = \frac{16}{20}$$

16 - соответствует накачке и сигналу в одном направлении,

20 – соответствует накачке и сигналу в противоположных направлениях.

20. Величина мощности и поля связаны между собой через интенсивность I

 $I = \frac{1}{2} \varepsilon_0 cn |E|^2$ $I = \frac{P}{S}, \varepsilon_0 - электрическая постоянная,$

с – скорость света,

n – показатель преломления,

Е – поле.

21. Для ВРМБ порог генерации по мощности из шумов определяется выражением

$$\frac{g_B \times L_{_{\ni \phi \phi}}}{S} = 21,$$

g_B – коэффициент спонтанного рассеяния Мандельштама – Бриллюэна

22. В случае вынужденного четырёхволнового смешения коэффициент усиления G равен

$$G=\frac{1}{4}e^{2\gamma P_n L_{s\phi\phi}},$$

 γ – нелинейный параметр, определённый выше, $P_{\rm H}$ – мощность накачки.

Выражение выполняется при условии $\Delta\beta Z=2\gamma P_H Z$.

Это – равенство линейного и нелинейного набега фаз, что реализуется в области аномальной дисперсии (λ >1.3 мкм).

Коэффициент усиления $G = \gamma P_{\mu} L_{s\phi\phi}$, когда $\Delta\beta$ – малая величина.

23. Период фазовой решётки Брэгга Λ рассчитывается на основании выражения $\lambda=2n\Lambda$.

3. Задачи

3.1. Взаимодействие света с веществом, спектры

Поглощение, спонтанное и вынужденное излучение

1. На вещество с однородно уширенной спектральной линией воздействует насыщающее монохроматическое излучение, частота которого равна частоте максимума линии. Определить величину интенсивности излучения, воздействие которого приведёт к возрастанию ширины линии на 1%. Длина волны излучения равна 0,5 *мкм*. Ширина ненасыщенной линии – 1 cm^{-1} . Время релаксации возбужденного уровня энергии определяется процессом спонтанного испускания излучения и составляет 10^{-3} с. Показатель преломления вещества равен 1,5.

2. Вещество находится в состояний термодинамического равновесия с окружающим его электромагнитным излучением и имеет температуру 27° С. Найти соотношение между вероятностями процессов спонтанного и вынужденного испускания излучения веществом под действием окружающего равновесного электромагнитного поля

- 1. на длине волны 100 нм
- 2. на длине волны 1 см.

Оптические спектры различных материалов от газов до полупроводников

1. Оценить естественную ширину спектральных линий, расположенных в следующих диапазонах электромагнитного спектра: 10 *нм*; 500 *нм*; 10 *мкм*; 1 *см*; 100 *м*.

Значения ширин привести в шкалах круговых частот ($\Delta \omega = \gamma$) и длин волн ($\Delta \lambda$). Как соотносятся между собой значения естественных ширин спектральных линий, расположенных в разных частях электромагнитного спектра, если они выражены в шкале длин волн?

2. Дать сравнительную оценку величин электронной, колебательной и вращательной энергии молекул на примере молекулы водорода (H_2) .

3. Нарисовать схему мультиплетного расщепления уровней перехода 3^2P-3^2D атома натрия. Пользуясь правилом сумм интенсивностей, рассчитать относительные интенсивности спектральных компонент.

4. Написать обозначения нижних термов в схеме LS-связи для электронных конфигураций атома ртути: $5d^{10}6s^2$, $5d^{10}6s6p$, $5d^96s^26p$, $5d^96s^27s$. Уровни каких из этих конфигураций могут вза-имно возмущать друг друга?

3.2. Оптические усилители и лазеры-генераторы

1. Определить величину эквивалентной спектральной плотности мощности входного шума усилителя hv при $\lambda = 1550$ нм. Какова ее размерность?

2. Найти эквивалентную мощность входного шума усилителя $h v \Delta v$ в референсной полосе оптического фильтра оптического анализатора спектра (OSA), равной 0,1 нм.

3. Найти максимальное значение (квантовый предел) $OSNR_{Q}$ при мощности сигнала 1 мВт на длине волны 1550 нм.

4. Найти мощность шума ASE на оптическом приемнике с полосой оптического фильтра $B_{opt} = 6 \Gamma \Gamma \mu$ при мощности сигнала 6 мВт на длине волны 1550 нм и *OSNR* = 30 дБ.

5. Найти шум-фактор усилителя (длина волны 1550 нм) с усилением g=10 дБ (усиление равномерно распределено по усилителю длиной 10 м), фактор спонтанного излучения $n_{sp} = 1,5$.

6. В линию с удалённым усилителем (ROPA1) вводится сигнал мощностью 10,5 дБм. Измеренное при помощи OSA значение $OSNR_{OSA,in,Line} = 46$ дБ. На вход усилителя поступает ослабленный сигнал мощностью $p_{in,ROPA1} = -2,88$ дБм. Измеренная мощность на выходе усилителя

 $p_{out,ROPA1} = 11,4$ дБм , а $OSNR_{OSA,out,ROPA1} = 44$ дБ.

Найти коэффициент усиления и шум-фактор удалённого усилителя.

7. Найти шум-фактор длинной линии при *Р*_{вх}≅2 дБм,

*OSNR*_{вых}≈20 дБ. Считать входной сигнал не содержащим избыточных шумов (только квантовый шум).

8. Найти минимальное значение шум-фактора эрбиевых усилителей с коэффициентами усиления 3 дБ, 10 дБ и 20 дБ в предположении полной инверсии населенностей и отсутствии пассивных потерь.

9. Чему равна мощность спонтанного излучения EDFA в полосе $\Delta\lambda$ =0,1 нм на длине волны λ =1550 нм при F=2,5 (4 дБ),

 $G = 10^2$ (20 дБ).

10. Найти шум-фактор и коэффициент усиления усилителя, содержащего усиливающий элемент с $G_a=100$ (20дБ) и $F_a=2,5$ (4 дБ), и пассивный элемент на входе с затуханием a=0,5 дБ.

11. Найти шум-фактор пролёта ВОЛС, содержащего участок волокна длиной 100 км (затухание 0,2 дБ/км) и усилитель, с шум-фактором $F_a=4$ (6 дБ) и усилением, полностью компенсирующим потери в участке волокна.

12. Найти шум-фактор двух пролётов ВОЛС, содержащих каждый участок волокна длиной 100 км (затухание 0,2 дБ/км) и усилитель, с шум-фактором F_a=4 (6 дБ) и усилением, полностью компенсирующим потери в участке волокна.

13. Вывести формулу Фрииса для каскада из двух усилителей.

14. Вывести формулу Фрииса для каскада из N усилителей.

15. Найти шум-фактор линии связи из М одинаковых пролетов с усилителями, компенсирующими потери в волоконных участках.

16. Найти $OSNR_{OUT}$ на выходе многопролётной линии связи из М одинаковых пролетов с усилителями, компенсирующими потери в волоконных участках. Мощность сигнала на входе в линию считать заданной (P_{IN}), длина волны 1550 нм.

3.3. Методы создания обратной связи. Моды открытых резонаторов. Импульсные и непрерывные режимы

1. Оценить величину порогового значения разности приведенных плотностей населенностей уровней энергии $(N_2/g_2 - N_1/g_1)_n$ рабочего перехода для гелий-неонового лазера с параметрами резонатора: L=0,3 м, $R_1=1$, $R_2=R=0,95$, $\gamma_{np}=0$, генерирующего в видимом диапазоне на длине волны $\lambda_0 = 0,63$ мкм. Распределенными потерями пренебречь, показатель преломления среды n=1. Считать, что форма спектральной линии определяется доплеровским уширением и является гауссовой, а $g_1=g_2$.

2. Найти время затухания излучения t_3 в холодном резонаторе гелий-неонового лазера с параметрами: L=0,3 м, $R_1=1$, $R_2=R=0,95$, $\gamma_{np}=0$. Распределенными потерями пренебречь, показатель преломления среды n=1.

3. Определить ширину линии излучения YAG:Nd лазера с длиной волны 1,06 мкм, n = 1,82, длина 1 см, прозрачность зеркала 0,5% и мощность излучения 1 мВт. $\tau_{FOT} = 24$ нс; $\Delta v_{Q} = 5 \cdot 10^{-2}$ Гц.

4. Определить ширину линии излучения полупроводникового лазера с энергией кванта 1,4 эВ, n = 3, длина 100 мкм, прозрачность зеркала 30% и мощность излучения 1 мВт. $\tau_{FOT} = 6$ пс; $\Delta v_{\varrho} \approx 10$ МГц.

$$\Delta v_{Q} = \frac{hv}{8\pi\pi_{OUT}} \left(\frac{c}{nL}\right)^{2} \left(\alpha L - \ln R_{OUT} R_{Z}\right) \ln R_{OUT} \left(1 + \alpha_{M}\right)$$

3.4. Волоконная оптика

1. Оценить числовую апертуру одномодового световода на длину волны λ =1550 нм с радиусом сердцевины а=4 мкм.

2. Оценить значение Δn (разность показателей преломления сердцевины n_c и оболочки n_o) в кварцевом световоде, если известно, что световод одномодовый, длина волны излучения λ равна 1550 нм, а радиус сердцевины составляет a = 4 мкм. 3. Рассчитать коэффициент связи χ в X-образном разветвителе из одномодовых слабонаправляющих волокон для λ =1550 нм с радиусом сердцевины а=4 мкм и расстоянием между краями сердцевин S=10 мкм. Показатель преломления волокна n = 1,46.

4. Оценить расстояние S между краями двух сердцевин слабонаправляющих одномодовых световодов в направленном ответвителе, если известно, что коэффициент связи $\chi = 1 \text{ см}^{-1}$, длина волны излучения $\lambda = 1550$ нм, радиус сердцевины световода a=4 мкм.

5. Два одномодовых световода сварены для получения Хобразного разветвителя. Связь между световодами в результате сварки слабая, так что общая симметричная мода для двух световодов распространяться не может. Но может распространяться общая для двух световодов антисимметричная мода с равным нулю полем на границе световодов. Изготовленный разветвитель обеспечивает 100% передачу излучения из одного канала в другой. Определить для этого случая соотношение между коэффициентом связи между каналами и разностью постоянных распространения ($\Delta\beta$) симметричной моды в каждом канале и общей антисимметричной модой для двух каналов.

6. Определить коэффициент связи двухканального разветвителя, если известно, что излучение полностью (100%) передаётся из одного канала в другой на длине L=1,5 см. Определить также длину, на которой разветвитель работает в режиме 50/50.

7. Оценить величину постоянной распространения в одномодовом слабонаправляющем световоде с радиусом сердцевины 4 мкм для длины волны в вакууме λ =1550 нм, n = 1,46 и на каком расстоянии z световая волна приобретает набег фаз 2π .

8. Определить напряжение, необходимое для 100% модуляции излучения в двухканальном волноводном электрооптическом модуляторе при следующих параметрах: λ =1550 нм, длина модулятора L=1 см, площадь 3×3 мкм², показатель преломления световедущей части n=3,5. Эффективный коэффициент r, определяющий линейный электрооптический эффект Поккельса, равен 10⁻¹² м/В.

9. Дан одномодовый слабонаправляющий световод с радиусом сердцевины *a*=4 мкм. Оценить расстояние от границы сердцевины, на котором поле, проникающее в оболочку, уменьшится в *e* раз.

10. Показать, что для импульсов с одинаковой дисперсионной длиной в области нормальной и аномальной дисперсий увеличение длительности импульса с расстоянием одинаково.

11. Определить расстояние, на котором ширина спектра спектрально-ограниченного импульса возрастает в 4 раза за счет эффекта ФСМ (Фазовой самомодуляции), если известно, что λ=1550 нм, $n_2 = 2.8 \times 10^{-20} \text{ м}^2/\text{BT}$, эффективная площадь моды 75 мкм², мощность $P_0 = 1$ Вт.

12. Рассчитать мощность импульса, необходимую для возникновения фундаментального солитона, при следующих условиях: λ =1550 нм, $\beta_2 = (d^2 \beta/dw^2)$ =-25 пс²/км, $n_2 = 2.8 \times 10^{-20} \text{ м}^2/\text{Bt}$, длительность импульса $\tau_0 = 90$ пс, эффективная площадь моды S=75 мкм².

13. Для амплитудно-кодовой модуляции определить расстояние, на котором скорость передачи информации составит 20 Гбит/с при следующих данных: длительность импульса на входе $\tau_0 = 10$ пс, λ =1550 нм, волокно со смещенной дисперсией $\beta_2 = -2 \text{ nc}^2/\text{км}$.

14. В выражении $P = P_0 e^{(-\alpha Z)}$:

 P_0 – мощность на входе световода

P – мошность на расстоянии Z

Показать, что

 $\alpha = \frac{\text{Потери мощности на единицу длины}}{\text{Прошедшая по волноводу мощность}}$

15. Рассчитать в дБ коэффициент ненасыщенного ВКР усиления -G_R и длину волны накачки в кварцевом световоде в случае одинакового направления накачки и сигнала при следующих исходных ланных:

λ_{сигн}=1,55 мкм, Р_{нак}=1Вт, длина световода L=5 км, площадь моды 50 мкм². Коэффициент комбинационного усиления $g_R = 10^{-13}$ м/Вт при накачке λ=1 мкм. Световод сохраняет поляризацию.

16. Рассчитать порог генерации ВКР из шумов по мощности и по величине поля, а также длину волны стоксова излучения при непрерывной накачке в кварцевом световоде, сохраняющем поляризацию и одинаковым направлением накачки из стоксовой волны, при следующих исходных данных: длина волны накачки

 $\lambda_{_{нак}}$ =1,45 мкм, эффективная площадь моды S=50 мкм², длина световода 15 км. Коэффициент комбинационного усиления при накачке на длине волны $\lambda_{_{нак}}$ =1 мкм равен g_R($\lambda_{_{сигн}}$)=10⁻¹³м/Вт.

17. Оценить порог генерации ВРМБ по мощности и величине поля (генерация ВРМБ из шумов) для квази-непрерывного излучения в одномодовом световоде, сохраняющем поляризацию, при следующих исходных данных: длина волны λ =1,55 мкм, эффективная площадь моды S=50 мкм², эффективная длина световода L_{эфф}=20км, коэффициент ВРМБ усиления g_в=5x10⁻¹¹ м/Вт

18. Определить коэффициент ненасыщенного усиления для усилителя на основе четырехволнового смешения при следующих исходных данных: $\lambda_{\mu\alpha\kappa} = 1,45 \text{мкm}$, $P_{H}=1,4$ Вт, $\gamma=11$ Вт^{-1 ×}км⁻¹, длина усилителя – 500м. Известно также, что выполняется условие фазового синхронизма $\Delta\beta=2\gamma P_{H}$. Световод сохраняет поляризацию.

19. Определить коэффициент ненасыщенного усиления в дБ для усилителя на основе четырехволнового смешения при следующих исходных данных: $P_{\text{нак}}=1$ Вт, $\gamma=10$ Вт⁻¹км⁻¹, эффективная длина световода 10 км, линейное фазовое рассогласование сигналов $\Delta\beta$ -малая величина. Световод сохраняет поляризацию.

20. Определить период фазовой решётки Брэгга Λ для создания зеркала в волоконном лазере на λ =1080 нм. Средний показатель преломления n=1,46 распространения ($\Delta\beta$) симметричной моды в каждом канале и общей антисимметричной модой для двух каналов.

4. Ответы и решения

4.1. Взаимодействие света с веществом

Поглощение, спонтанное и вынужденное излучение

1. При воздействии на вещество с однородноуширенной спектральной линией насыщающего монохроматического излучения, частота которого равна частоте максимума линии, ширина насыщенной линии описывается выражением:

$$\Delta \omega_{21}^{Sat} = \Delta \omega_{21}^{0} + 2 \mathbf{W}_{21,Stim} \tag{1}$$

Ширина ненасыщенной линии по условию $\Delta \omega_{21}^0 = 1 c M^{-l} = 6,28 \cdot 3 \cdot 10^{10} c^{-1} = 2 \cdot 10^{11} c^{-1}$

Вероятность вынужденного перехода:

$$W_{21,Stim} = \frac{\pi^2 c^2}{\hbar \omega_0^2 n^2 \tau_{21}^{sp}} q_{21}(\omega \omega)_0^2$$
$$q_{21}(\omega_0) = \frac{2}{\pi \Delta \omega_{21}}$$

Для излучения с частотой максимума линии:

$$W_{21,Stim} = \frac{2\pi^2 c^2}{\hbar \omega_0^2 n^2 \tau_{21}^{sp} \Delta \omega_{21}} I_{\omega_0}$$
(2)

По условию задачи

$$(\Delta \Delta_{21}^{Sat} - \Delta \omega_{21}^{0}) / \Delta \omega_{21}^{0} = 0,01$$
(3)

Подставив (1) и (2) в (3) получим:

$$2W_{21,Stim} = 0,01 \cdot \varDelta \omega_{21}^{0}$$

$$\frac{2\pi^{2}c^{2}}{\hbar \omega_{0}^{2}n^{2}\tau_{21}^{sp}\varDelta \omega_{21}}I_{\omega_{0}} = 0,01 \cdot 10^{11} = 10^{9}$$
(4)
$$I_{\omega_{0}} = 10^{9} \frac{\hbar \omega_{0}^{2}n^{2}\tau_{21}^{sp}\varDelta \omega_{21}}{2\pi^{2}c^{2}}$$
(5)

2. Процессы спонтанного и вынужденного излучения приводят к установлению термодинамического равновесия. Вероятности спонтанного и вынужденного переходов в единицу времени обозначим w_{SP} и w_{IND} соответственно.

Отношение населённостей уровней энергии $N_{1,2}$ совокупности рабочих частиц в состоянии термодинамического (теплового) равновесия, описываются формулой Больцмана, которая в отсутствии вырождения имеет вид:

$$N_2 / N_1 = \exp[-(E_2 - E_1) / kT] = \exp[-hv_{21} / kT]$$
 (1)

В состоянии термодинамического равновесия скорость переходов из состояния 1 в состояние 2 и из состояния 2 в 1 равны

$$w_{IND} N_1 = w_{IND} N_2 + w_{SP} N_2$$
(2)

Соотношение между вероятностями процессов спонтанного и вынужденного испускания излучения веществом под действием окружающего равновесного электромагнитного поля получим из выражения (2):

$$w_{SP} / w_{IND} = (N_1 - N_2) / N_2$$
(3)

С учетом (1) получаем окончательно:

$$w_{SP} / w_{IND} = [1 - \exp(-h v_{21} / kT)] / \exp(-h v_{21} / kT)$$
(4)

При температуру 27° C температура по шкале Кельвина $T \approx 300$ K

 $kT = 4,14 \cdot 10^{-21}$ Дж

Энергия квантов излучения, отношение энергии кванта к тепловой энергии и соотношении вероятностей спонтанного и вынужденного излучения в двух диапазонах:

1) На длине волны 100 *нм*: $v_{21} = 3 \cdot 10^8 / (100 \cdot 10^{-9}) = 3 \cdot 10^{15}$ Гц, $h v_{21} \approx 2 \cdot 10^{-18}$ Дж $h v_{21} \approx 2 \cdot 10^{-18}$ Дж $h v_{21} / kT \approx 0.48 \cdot 10^3 = 480$ $w_{SP} / w_{IND} = (N_1 - N_2) / N_2 \approx 3.10^{208}$

Вероятность индуцированных переходов под действием равновесного теплового излучения в УФ и оптическом диапазонах пренебрежимо мала по сравнению с вероятностью спонтанных переходов!

2) На длине волны 1 *см*: $v_{21} = 3 \cdot 10^8 / 0,01 = 3 \cdot 10^{10}$ Гц, $hv_{21} \approx 20 \cdot 10^{-24} = 2 \cdot 10^{-23}$ Дж $hv_{21} / kT \approx 0,48 \cdot 10^{-2} = 0,0048$ $hv_{21} / kT \approx 0,99521$ $w_{SP} / w_{IND} = (N_1 - N_2) / N_2 \approx 0,0048$

Вероятность индуцированных переходов под действием равновесного теплового излучения в сантиметровом диапазоне в двести раз больше вероятности спонтанных переходов!

Оптические спектры различных материалов от газов до полупроводников

1. В предположении малости затухания выражение для естественной ширины линии в классическом приближении имеет вид:

$$\gamma = \frac{1}{6\pi\varepsilon_0} \frac{e^2 \omega_0^2}{m_e c^3} \tag{1}$$

Если выразить через длину волны, то формула (1) принимает следующий вид:

$$\gamma = \frac{1}{6\pi\varepsilon_0} \frac{e^2 (2\pi\pi/\lambda)^2}{m_e c^3} = \frac{2\pi}{3\varepsilon_0} \frac{e^2}{m_e c\lambda^2}$$
(2)

$$\varepsilon_0 = 8,85 \times 10^{-12} \, \mathcal{O} / M; \ e = 1,6 \cdot 10^{-19} \ K \pi; \ m_e = 9,1 \cdot 10^{-31} \ \kappa 2.$$

Для 10 нм $\gamma = 22 \cdot 10^{10}.$
Для 500 нм $\gamma = 0,88 \cdot 10^8.$
Для 10 мкм $\gamma = 22 \cdot 10^4.$
Для 1 см $\gamma = 22 \cdot 10^{-2}.$
Для 100 м $\gamma = 22 \cdot 10^{-10}.$

2.
$$\frac{E_{\text{ROJ}}}{E_{\text{BJ}}} \sim \frac{\omega_{\text{ROJ}}}{\omega_{\text{BJ}}} \sim \frac{\sqrt{\frac{K_{\text{ROJ}}}{M}}}{\sqrt{\frac{M}{M}}} \sim \sqrt{\frac{m}{M}} \sim 10^{-3};$$

$$\frac{E_{\text{BP}}}{E_{\text{BJ}}} \sim \frac{\frac{\hbar}{2M_{BO}^2} J(J+1)}{\frac{\hbar}{2mao^2}} I(I+1) \sim 10^{-3}$$

$$K_{\text{ROJ}} \sim K_{\text{BJ}}, \ \overline{M} - \text{Macca ядер};$$

$$E_{\text{DJ}} \sim \text{кинетические энергии вращения электрона;}$$

$$\overline{M} = \frac{M_1 \times M_2}{M_1 + M_2} \approx \frac{M}{2}.$$

3

$$3^{2}D = 5/2 = 6 \qquad \frac{Ia+Ic}{Ib} = \frac{4}{6} \\ 3/2 = 4 \qquad \frac{Ia+Ic}{Ic} = \frac{4}{2} \end{bmatrix} I_{a}:I_{b}:I_{c} = 1:9:5 \\ 3^{2}P = 3/2 = 3/2 = 4 \\ J=1/2 = 2$$

Правило отбора $\Delta J=0, \pm 1$ 5 $d^{10}6s^2 - две заполненные оболочки с нулевыми моментами L=0, S=0 терм <math>{}^{1}S_0$ 5 $d^{10}6s6p$ $l_1=0$ $s_1=l/2$ ${}^{1}P, {}^{3}P$ $l_{2}=1$ $s_{2}=l/2$ L=1 S=0,1 ${}^{1}P {}^{1}D {}^{1}F_{3}P {}^{3}D {}^{3}F$ 5 $d^{9}6s^26p \sim dp$ $l_1=2$ S=0.1 ${}^{1}P {}^{1}D {}^{1}F_{3}P {}^{3}D {}^{3}F$ 5 $d^{9}6s^27s \sim ds L=2, S=0.1 {}^{1}D, {}^{3}D$

Взаимно возмущаться могут только конфигурации одинаковой четности, определяемой $p = \sum_{i} l_i$ как $(-1)^p$.

Таким образом могут возмущаться первая и последняя (четные) и 2-я и 3-я (нечетные).

4.2. Оптические усилители и лазеры-генераторы

1. Длине волны $\lambda = 1550$ нм соответствует частота $\nu = 193,4$ ТГц, спектральная плотность мощности составляет $h\nu = 1,28 \cdot 10^{-19}$ Вт/Гц. Численно и по размерности эквивалентная плотность мощности входного шума усилителя $h\nu$ совпадает с энергией кванта.

2. Полосе 0,1 нм при λ = 1550 нм соответствует полоса в Гц

 $\Delta v = 12,5$ ГГц. Эквивалентная мощность равна $0,16 \times 10^{-8}$ Вт или $1,6 \times 10^{-6}$ мВт или -58 дБм.

3.
$$OSNR_Q = \frac{P_S}{hv_S B_{ref}} = 58 \text{ дБ}$$

Референсная полоса равна 12,5 ГГц, что соответствует полосе разрешения 0,1 нм оптического спектроанализатора на длине волны 1550 нм (193,4 ТГц).

4. Мощность шума определяется полосой оптического фильтра B_{opt} и спектральной плотностью мощности шума $S_{ASE,1Pol}$: $P_{ASE} = 2S_{ASE,1Pol}B_{opt}$. Из известного значения OSNR можно найти $S_{ASE,1Pol}$, воспользовавшись выражением: OSNR – P_S

$$OSINR = \frac{1}{2(S_{ASE,1Pol} + h\nu/2)B_{REF}}.$$

Из него получаем: $2S_{ASE,1Pol} = \frac{P_S}{OSNR \cdot B_{REF}} - h\nu \approx \frac{P_S}{OSNR \cdot B_{REF}}$, от-

куда окончательно:

$$P_{ASE} = 2S_{ASE,1Pol}B_{opt} = \frac{P_S \cdot B_{opt}}{OSNR \cdot B_{REF}}$$
. В дБ эта формула имеет вид:

$$p_{ASE} = 10 \lg \frac{P_S \cdot B_{opt}}{OSNR \cdot B_{REF}} = p_S - osnr + 10 \lg \frac{B_{opt}}{B_{REF}} \approx 4-30-3=-29$$
дБм.

5.

$$OSNR_{OUT} = \frac{G_L P_{in}}{2(S_{ASE,1Pol} + h\nu/2)B_{opt}} = \frac{G_L P_{in}}{2(n_{sp}h\nu_0(G_L - 1) + h\nu/2)B_{opt}}$$

26

$$OSNR_{IN}^{Q} = \frac{P_{in}}{h v B_{opt}}$$

$$F = \frac{OSNR_{IN}^{Q}}{OSNR_{OUT}} = \frac{\frac{P_{in}}{h v B_{opt}}}{\frac{Q}{2(n_{sp}h v_0(G_L - 1) + hv/2)B_{opt}}} = \frac{2(n_{sp}(G_L - 1) + 1/2)}{G_L}$$

$$F = \frac{2(1,5(10-1)+1/2)}{10} = 2,8 \qquad NF = 10\lg(2,8)$$

Экспериментально при помощи OSA измеряется следую-6. щая величина:

$$OSNR_{OSA} = \frac{P_S}{P_{ASE}}$$

 $P_{ASE,in,Line} = 10,5-46 = -35,5 \text{ дБм соответствует}$
 $P_{Nois,in,Line} = 0,000282 \text{ мBT} = 282 \text{ нBT}$
 $p_{Nois,Qlim} = -58 \text{ дБм соответствует} P_{Nois,Qlim} = 1,58\text{E-6 MBT} = 1,58 \text{ нBT}$
 $P_{Nois,in,Line} = P_{ASE,in,Line} + P_{Nois,Qlim} = 283,58 \text{ нBT соответствует}$
 $-34,47 \text{ дБм}.$

Затухание на первом участке: Z = 10,5 + 2,88 = 13,38 дБ $p_{ASE in ROPA1} = -35,5$ дБм-13,38 дБ = -48,88 дБм; соответствует $P_{ASE,in,ROPA1} = 12,9$ нВт $p_{ASE.out.ROPA1} = 11,4$ дБм-44 дБ =-32,4 дБм; соответствует $P_{ASE out ROPA1} = 575$ нВт

Созданный в ROPA1 шум ($\Delta P_{ASE.out.ROPA1}$): $\Delta P_{ASE,out,ROPA1} = P_{ASE,out,ROPA1} - G_{ROPA1} \cdot P_{ASE,in,ROPA1} = 575 - 26,8 \times 12,9 = 1000$ 575-346=229 нВт $g_{ROPA1} = 14,28$ дБ соответствует $G_{ROPA1} = 26,8$ $F = \frac{\Delta P_{ASE,out,ROPA1} + P_{Nois,Qlim}}{G_{ROPA1} \cdot P_{Nois,Qlim}} = \frac{229 + 1,58}{26,8 \cdot 1,58} = 5,45$

Шум фактор $NF = 10 \lg F = 7,36 дБ$

9. Оценка шум-фактора длинной линии: с помощью формулы $F(дE) \cong 58 + Pbx$ - OSNRвых получаем оценку: F=40 дE.

10. Шум-фактор усилителя можно выразить через мощность спонтанного излучения на его выходе (в полосе 0,1 нм): $F_{EDFA}=(1/G) [1+P_{cn}/hv\Delta v]$, где $P_{cn}=2n_{cn} hv\Delta v(G-1)$.

Коэффициент спонтанного излучения $n_{cn}=n_2/[n_2-n_1 \sigma_n/\sigma_n]$ при полной инверсии равен 1. Следовательно min(F_{EDFA})=2 – 1/G равно 1,5; 1,9 и 1,99 при коэффициентах усиления 3 дБ, 10 дБ и 20 дБ соответственно.

11. Из формулы F=(1/G) [1+P_{сп}/hv Δv] получим выражение для мощность спонтанного излучения на выходе оптического усилителя: P_{сп}=(F G - 1) hv $\Delta v \approx$ (F G)(hv Δv). Удобно полученную приближенную формулу записать в логарифмическом виде: $p_{ASE} \approx NF + g + 10 \lg (h v \Delta v) = 4 + 20 - 58 = -34$ дБм.

12. В единицах децибел: $F = F_a - 10 \log T = F_a + a - пассивный элемент на входе в усилитель увеличивает его шум-фактор на величину потерь в этом элементе (a(дБ) = -10 logT). F=4,5 дБ, усиление 19,5 дБ.$

13. Пусть коэффициент пропускания пассивного элемента равен Т. Коэффициент усиления всей системы равен G = T G_a. Шумфактор пассивного элемента определяется выражением: $F_T = 1/T$. В формуле $F=F_1+(F_2-1)/G_1+\ldots+(F_N-1)/(G_1\ldots G_N)$ положим $G_1=T$, $F_1=1/T$, $G_2=G_a$, $F_2=F_a$, получим: $F=1/T+(F_a-1)/T=F_a/T$.

Шум-фактор и коэффициент усиления EDFA с пассивным элементом (а) на входе, (б) на выходе

1. Пассивный участок представим как усилитель с усилением $G_1 = T = 1/A^{abs} = 0,01$ ($g_1 = -\alpha L = -20 \, \text{дБ}$) и шум-фактором $F_1 = 1/T = A^{abs} = 100$ ($NF_1 = \alpha L = 20 \, \text{дБ}$). Усиление усилителя $G_2 = 100$, т.к. оно компенсирует потери в волокне. Шум фактор усилителя дан $F_2 = F_a = 4$. Используем формулу Фрииса для двух усилителей:

$$F_{\Sigma} = F_1 + (F_2 - 1)/G_1 = 1/T + 1/T(F_a - 1) = (1/T) \cdot F_a = A^{abs} \cdot F_a$$

$$NF_{\Sigma} = \alpha L + NF_a$$

$$NF_{\Sigma} = 26 \text{ дБ } (F_{\Sigma} = 400)$$
2. Шум фактор пролета $NF_{\Pi pon} = \alpha L + NF_a = 26 \text{ дБ или}$

 $F_{Прол} = 400$, а усиление $G_{Прол} = 1$ или $g_{Прол} = 0$ дБ.

Используем формулу Фрииса для двух пролетов, рассматриваемых как обобщенные усилители:

$$\begin{split} F_{\Sigma} &= F_1 + (F_2 - 1)/G_1 = F_{\Pi pon} + (F_{\Pi pon})/1 = 2F_{\Pi pon} - 1 \approx 2F_{\Pi pon} \\ NF_{\Sigma} &\approx NF_{\Pi pon} + 3 \text{ д.} \end{split}$$

 $F_{\Sigma} = 799$ или ~29 дБ (с высокой точностью).

3. Коэффициент усиления и шум-фактор первого усилителя F_1 и $G_1,$ второго F_2 и $G_2. \ C$ помощью выражения

F=(1/G) [1+Рсп/hv Δv] найдем мощность спонтанного излучения этих усилителей: Рсп(1)=(F₁ G₁-1) hv Δv и Рсп(2)=(F₂ G₂-1) hv Δv . На выходе каскада: Рсп=[(F₂ G₂-1)+G₂ (F₁ G₁-1)] hv Δv . Коэффициент усиления всей системы G (в отсутствие насыщения) равен G=G₁ G₂. Подставив выражения для Рсп и G в формулу F=(1/G) [1+Рсп/hv Δv], получим: F=F₁+(F₂-1)/G₁.

4. Коэффициент усиления и шум-фактор первого усилителя F_1 и G_1 , второго F_2 и G_2 , третьего F_3 и G_3 и т.д. Найдем шум-фактор системы из двух первых усилителей:

$$F_{1+2} = F_1 + (F_2 - 1)/G_1.$$

Усиление равно: $G_{1+2} = G_1 G_2$.

Найдем шум-фактор системы из трех усилителей. Для этого используем формулу Фрииса для двух усилителей, считая, что первый усилитель двухкаскадный и состоит из первого и второго усилителей. Тогда:

 $F_{1+2+3} = F_{1+2} + (F_3 - 1)/(G_1 G_2) = F_1 + (F_2 - 1)/(G_1 + (F_3 - 1)/(G_1 G_2))$

Повторяя такие рассуждения, найдем шум-фактор для любого числа последовательно соединённых усилителей.

5. Шум-фактор пролета: $NF_{Прол} = \alpha L + NF_a$ или

 $F_{\Pi_{pon}} = A^{abs} \cdot F_a$, а усиление $G_{\Pi_{pon}} = 1$. В соответствии с формулой Фринса:

$$\begin{split} F_{\Sigma} &= F_1 + (F_2 - 1)/G_1 + (F_3 - 1)/(G_1G_2) + \ldots + (F_M - 1)/(G_1G_2 \ldots G_{M-1}) = \\ F_{\Pi pon} + (F_{\Pi pon} - 1) + (F_{\Pi pon} - 1) + \ldots + (F_{\Pi pon} - 1) = MF_{\Pi pon} - M + 1 \\ \text{В реальных линиях связи } NF_{\Pi pon} >> N - 1, \text{ поэтому} \end{split}$$

$$\begin{split} F_{\Sigma} &\approx M F_{\Pi pon} = M (A^{abs} \cdot F_a) \\ F_{\Sigma} &\approx M \cdot A^{abs} \cdot F_a, \ N F_{\Sigma} &\approx \alpha L + N F_a + 10 \log M \end{split}$$

6.
$$OSNR_{OUT} = OSNR_{IN} / F_{\Sigma} \approx (P_{IN} / h v \Delta v) / (M \cdot A^{abs} \cdot F_a)$$

Удобно выразить полученное решение в дБ:

$$OSNR_{OUT} = OSNR_{IN}^Q - NF_{\Sigma} \approx 58 + p_{IN} - \alpha L - NF_a - 10 \lg M$$

4.3. Методы создания обратной связи. Моды открытых резонаторов. Импульсные и непрерывные режимы 1.

$$N_2 - N_1 = \frac{\omega_0^2 n^3 \tau_{21}^{sp}}{\pi^2 c^3 q_{21}(\omega \omega_F)} \tag{1}$$

$$t_F = \frac{n}{c} \frac{1}{\gamma_{np} - (1/2L) \ln R} \approx \frac{n}{c} \frac{2L}{1-R}$$
(2)

$$t_F \approx \frac{n}{c} \frac{2L}{1-R} = \frac{2 \cdot 0.3}{3 \cdot 10^8 \cdot 0.05} = \frac{0.6}{10^8 \cdot 0.15} = 4 \cdot 10^{-8} = 40 \cdot 10^{-9} = 40 \ \text{Hc} \ (3)$$

$$q_{21}(\omega_0) \approx 1/\delta$$
 где $\delta \approx 10^{10} c^{-1}$ (4)

$$\tau_{21}^{sp} \approx 10^{-7} c^{-1} \tag{5}$$

Подставляя (3)-(5) в (1) получим окончательно ответ: $N_2 - N_1 = 10^{15} \ m^{-3} = 10^9 \ cm^{-3}$

$$t_F = \frac{n}{c} \frac{1}{\gamma_{np} - (1/2L) \ln R} \approx \frac{n}{c} \frac{2L}{1-R}$$

$$t_F \approx \frac{n}{c} \frac{2L}{1-R} = \frac{2 \cdot 0.3}{3 \cdot 10^8 \cdot 0.05} = \frac{0.6}{10^8 \cdot 0.15} = 4 \cdot 10^{-8} = 40 \cdot 10^{-9} = 40 \, \mu c$$

3.

$$\Delta v_{Q} = \frac{h v}{8\pi P_{OUT}} \left(\frac{c}{nL}\right)^{2} \left(\alpha L - \ln R_{OUT} R_{Z}\right) \ln R_{OUT}$$
$$\tau_{FOT} = \frac{1}{\left(\alpha - \frac{1}{2L} \ln R_{OUT} R_{Z}\right) c'}$$

4.

$$\Delta v_{Q} = \frac{hv}{8\pi\pi_{OUT}} \left(\frac{c}{nL}\right)^{2} \left(\alpha L - \ln R_{OUT} R_{Z}\right) \ln R_{OUT} (1 + \alpha_{M})$$
$$\tau_{FOT} = \frac{1}{\left(\alpha - \frac{1}{2L} \ln R_{OUT} R_{Z}\right)c'}$$

4.4. Волоконная оптика

1. Для одномодового световода нормализованная частота V \leq 2,405. $V = ak\sqrt{n_z^2 - n_o^2} = akNA$ Примем V=2,4 $NA = \frac{V}{ak} = \frac{2.4 \times 1550 \times 10^{-9}}{4 \times 10^{-6} \times 2\pi} = 14.9 \times 10^{-2} \approx 0.15$ 2. Так как световод одномодовый, то известно, что нормализованная частота V меньше 2,405. Возьмем нормализованную частоту V=2,4.

$$V = ak\sqrt{n_c^2 - n_0^2} = 2,4$$

$$V^2 = a^2k^2(n_c^2 - n_0^2)$$

$$n_c^2 - n_0^2 = \frac{V^2}{a^2k^2} = \frac{5,76 \times \lambda^2}{(4 \times 10^{-6})^2 \times (2\pi)^2} = \frac{5,76 \times (1550 \times 10^{-9})^2}{16 \times 10^{-12}(6,28)^2} = \frac{5,76 \times (155)^2 \times 10^{-16}}{16 \times 39,4 \times 10^{-12}}$$

$$= 219,5 \times 10^{-4} = 0,02195 \approx 0,022$$

$$n_c^2 - n_0^2 = 0,022$$

$$(n_c - n_o) \times (n_c + n_o) \approx 2n_c \Delta n$$

$$\Delta n = \frac{(n_c - n_o) \times (n_c + n_o)}{2n_c}$$

$$\Delta n = \frac{0,022}{2 \times n_c} = \frac{0,022}{2 \times 1,46} = 0,0075$$

Величина Дn=0,0075 – световод слабонаправляющий.

3. Устройство волоконного разветвителя показано на рисунке

Коэффициент связи χ равен:

$$\kappa = 2 \frac{\frac{U_{11}^2}{a^2} \times \frac{W_{11}}{a} \times e^{-\frac{W_{11}}{a}s}}{\beta_{11} \times 2a(\frac{W_{11}^2}{a^2} + \frac{U_{11}^2}{a^2})} = \frac{U_{11}^2 \times W_{11} \times \lambda}{2\pi \times n \times a^2 \times V^2 \times e^{\frac{W_{11}}{a}s}}$$

Для одномодового световода:

 $U_{01} = 2,405; V = 2,4$

$$U_{11}(V) = \frac{U_{01} \times V}{1 + [(U_{01} - 1)^4 + V^4]^{1/4}} = \frac{5.76}{1 + [(1.4)^4 + 33.2]^{1/4}} = \frac{5.76}{1 + [37.04]^{1/4}} = \frac{5.76}{3.47} = 1.66 \approx 1.7$$

$$W_{11} - \sqrt{V^2 - U_{11}^2} \approx 1.7$$

$$\kappa = 2 \frac{(1.7)^2 \times 1.7 \times 1550 \times 10^{-9}}{845 \times 10^{-12} \times e^{\frac{1.7 \times 10 \times 10^{-9}}{4 \times 10^{-9}}}} = \frac{4.9 \times 155 \times 10^{-8}}{845 \times 10^{-12} \times e^{4.25}} \approx 0.01 \times 10^4 = 10^2 \,\mathrm{m}^{-1} = 1 \,\mathrm{cm}^{-1}$$

4. Устройство волоконного разветвителя показано на рисунке

Коэффициент связи χ равен:

$$\chi = \frac{2\frac{U_{11}^2}{a^2} \times \frac{W_{11}}{a} \times e^{-\frac{W_{11}}{a}S'}}{\beta_{11} \times 2a\left(\frac{W_{11}^2}{a^2} + \frac{U_{11}^2}{a^2}\right)},$$

где U_{11} и W_{11} – поперечные волновые числа сердцевины и оболочки моды HE_{11} , соответственно. β_{11} – продольная постоянная распространения моды HE_{11}

$$\frac{W_{11}}{a^2} + \frac{U_{11}}{a^2} = \frac{V^2}{a^2},$$

где V-нормализованная частота. В этом случае выражение

$$-\frac{W_{11}}{a} \times S = \ln\left(\frac{\chi \times \beta_{11} \times V^2 \times a^2}{U_{11}^2 \times W_{11}}\right)$$
$$S = -\frac{a}{W_{11}} \ln\left(\frac{\chi \times \beta_{11} \times V^2 \times a^2}{U_{11}^2 \times W_{11}}\right)$$

Поскольку световоды слабонаправляющие, то

$$\beta_{11} = kn_c = \frac{2\pi}{\lambda}n_c$$

$$S = -\frac{a}{W_{11}} \ln\left(\frac{\chi \times 2\pi \times n_c \times V^2 \times a^2}{\lambda \times U_{11}^2 \times W_{11}}\right)$$

$$U_{11}(V) = \frac{U_{01} \times V}{1 + \left[(U_{01} - 1)^4 + V^4\right]^{\frac{1}{4}}} = \frac{5,76}{1 + \left[(1,4)^4 + 33,2\right]^{\frac{1}{4}}} = \frac{5,76}{1 + \left[37,04\right]^{\frac{1}{4}}} = \frac{5,76}{3,47} = 1,66 \approx 1,7$$

$$W_{11} = \sqrt{V^2 - U_{11}^2} \approx 1/7$$

Учитывая, что:

$$\chi = 1cM^{-1} = 10^2 M^{-1}; n_c = 1,46; V^2 = 5,76; U_{11} \approx 1,7; W_{11} \approx 1,7; a = 4 \times 10^{-6} M; \lambda = 1550 \times 10^{-9} M$$

$$\beta_{11} = kn_c = \frac{2\pi}{\lambda} n_c$$

$$S = -\frac{4 \times 10^{-6}}{1.7} \ln \left(\frac{10^2 \times 2\pi \times 1.46 \times 5,76 \times (4 \times 10^{-6})^2}{1550 \times 10^{-9} \times (1,7)^2 \times 1,7} \right) = -2,35 \times 10^{-6} \times (-4,5) = 10,6 \times 10^{-6} \approx 10MKM$$

5. Распределение полей на входе в разветвитель

В обоих световодах возбуждены симметричные моды с интенсивностью $\frac{1}{2}$ и общая антисимметричная мода с интенсивностью $\frac{1}{2}$. В результате в левом канале свет с интенсивностью 1, а в правом – 0 (Рис. 1). Разные моды имеют разные постоянные распространения – симметричные β_1 , ассиметричные – β_2 . На рис. 2 показана ситуация в разветвителе на расстоянии L, таком, что

 $(\beta_1 - \beta_2) \times L = \pi$ или $\Delta \beta L = \pi$

Рис. 2

В этом случае в левом канале интенсивность равна 0, а в правом – 1. Так как из системы связанных уравнений следует, что в правом канале интенсивность 1 будет тогда, когда в левом она станет равной 0, т.е.:

 $\cos^{2} \varkappa L = 0; \varkappa \times L = \frac{\pi}{2}$ Учитывая, что, $\Delta \beta L = \pi$, получим: $\frac{\Delta \beta}{\varkappa} = \frac{2\pi}{\pi} \rightarrow \Delta \beta = 2\varkappa \rightarrow \varkappa = \frac{\Delta \beta}{2}$ 6. Из анализа систем связанных уравнений следует, что излучение полностью передается из одного канала в другой при условии: $\cos^{2} \varkappa L = 0$

Сов $\lambda L = 0$ Следовательно $\lambda L = \frac{\pi}{2}$ $\varkappa = \frac{\pi}{2L} \approx 1 \text{ см}^{-1}$ Когда разветвитель работает в режиме 50/50: $\cos^2 \varkappa L = \frac{1}{2}$ $\cos \varkappa L = \frac{1}{\sqrt{2}}$ $\varkappa L = \frac{\pi}{4}$ Следовательно, $L = \frac{\pi}{4\varkappa} = 0,75 \text{ см}$

а) Коэффициент связи, при котором осуществляется полная передача сигнала, $\chi = 1$ см⁻¹

б) Длина, на которой разветвитель работает в режиме 50/50 – 0,75 см.

7.

Постоянная распространения Вер определяется из выражения

 $\beta_{sp}^{2} = k^{2}n_{c}^{2} - \frac{U_{sp}^{2}}{a^{2}}$, а для основной моды $\beta_{11}^{2} = k^{2}n_{c}^{2} - \frac{U_{11}^{2}}{a^{2}}$ Таким образом, для определения β_{11} нужно определить U_{11} поперечное волновое число сердцевины. Так как световод одномодовый, то V<2,405. Примем V=2,4. В этом случае, с учетом того, что волокно слабонаправляющее, поперечное волновое число сердцевины U_{11} равно

$$U_{11}(V) = \frac{U_{01}V}{1 + [U_{01} - 1)^4 + V^4]^{\frac{1}{4}}},$$

где U₀₁ = 2,4. Отсюда,*U*₁₁ ≈ 1,7

$$\beta_{11}^{2} = k^{2} n_{c}^{2} - \frac{U_{11}^{2}}{a^{2}} = \frac{(2\pi)^{2} n_{c}^{2}}{\lambda^{2}} - \frac{U_{11}^{2}}{a^{2}} = 3,4 \times 10^{13} - 0,018 \times 10^{13} = k^{2} n_{c}^{2}$$

$$\beta_{11}^{2} = 34 \times 10^{12}; \beta_{11} = 5,8 \times 10^{6} \, \text{m}^{-1}$$

$$\beta Z = 2\pi; Z = \frac{2\pi}{\beta} = \frac{6,28}{5,8 \times 10^{6}} = 1,1 \times 10^{-6} \, \text{m}$$

Если длина волны λ в вакууме равна 1550 нм, то длина волны в световоде составляет:

$$\lambda = \frac{1550 \times 10^{-9}}{1,46} \approx 1,1 \times 10^{-6} \, \text{M}$$

То есть набег фаз 2π реализуется на расстоянии, равном длине волны в материале световода.

8.

При отсутствии напряжения параметры двухканального модулятора подобраны так, что постоянные распространения в обоих каналах одинаковы:

 $\beta_1 = \beta_2 = \beta$

Если длина модулятора равна

$$L = \frac{\pi}{2\varkappa} - (\text{см. задачу 5}),$$

где χ - коэффициент связи между каналами, то при подаче света в канал <u>1</u> за счет «так называемого» туннельного эффекта на выходе модулятора свет выйдет из канала <u>2</u>. Такую ситуацию будем считать, как отсутствие модуляции.

Модуляция имеет место, когда свет, поданный в канал <u>1</u>, не попадет в канал <u>2</u>, а выйдет наружу из канала <u>1</u>.Такая ситуация будет иметь место, если в результате подачи напряжения на один из каналов из-за эффекта Поккельса изменится показатель преломления в световедущей части модулятора. Показатели преломления в двух каналах окажутся разными. Разными окажутся также и постоянные распространения:

 $\beta_1 - \beta_2 = \Delta \beta$.

Свет перестанет перетекать из канала <u>1</u> в канал <u>2</u> при условии $\Delta\beta L = \sqrt{3}\pi$, что следует из решения системы уравнений из п.7 раздела 2.2 «Краткий справочник по волоконной оптике» в случае $\beta_1 \neq \beta_2$.

Эффективный показатель преломления в световоде составляет

$$n_{\mathfrak{s}} = \frac{\beta}{k}$$
.

Таким образом, изменение эффективного показателя преломления, необходимое для достижения 100% модуляции, определяется выражением

$$\Delta n_{\rm s} = \frac{\sqrt{3}\pi}{kL}.$$

В свою очередь, величина Δn_э равна:

$$\Delta n_{\rm s} = \frac{n^3 r V}{2t_m},$$

где t_m- толщина модулятора, равная 3 мкм в нашем случае, V-приложенное напряжение.

$$\Delta n_{3} = \frac{\sqrt{3\pi\lambda}}{2\pi L} = \frac{1.7 \times 1550 \times 10^{-9}}{2 \times 10^{-2}} = 1.3 \times 10^{-4}$$
$$V = \frac{\Delta n_{3} \times 2t_{m}}{n^{3}r} = \frac{1.3 \times 10^{-4} \times 2 \times 3 \times 10^{-6}}{(3.5)^{3} \times 10^{-12}} = 18B$$

9.

Поле спадает в оболочке в соответствии с тем, как ведет себя функция Макдональда:

$$K\left(\frac{W_{11}}{a}r\right)$$
 при $r > a$

Её можно аппроксимировать выражением

$$K\left(\frac{W_{11}}{a}r\right) \sim e^{-\frac{W_{11}}{a}r}$$

где W₁₁ – поперечное волновое число оболочки. Эта функция уменьшается в *е* раз при

$$\frac{W_{11}}{a}r = 1$$

где W₁₁ определим из соотношения:

$$W_{11} - \sqrt{V^2 - U_{11}^2}$$

где V –нормализованная частота, U₁₁ – поперечное волновое число сердцевины. Так как световод одномодовый, то V≤2,40В. Примем V=2,4В. U₁₁ определим из выражения для одномодового слабона-правляющего волокна:

$$U_{11}(V) = \frac{U_{01} \times V}{1 + [(U_{01} - 1)^4 + V^4]^{1/4}}$$

где U₀₁ =2,4В. Отсюда получаем U₁₁ \approx 1,7В, W₁₁ \approx 1,7. Из выражения $\frac{W_{aa}}{a}r = 1$. Получаем

$$r = \frac{a}{W_{11}} = \frac{4 \times 10^{-6}}{1.7} \approx 2.4 \times 10^{-6} \,\mathrm{m} \approx 2.5 \,\mathrm{mkm}$$

10.

Соотношение между длительностью импульса в точке Z световода (τ_Z) и длительности на входе (τ_0) имеет вид:

$$\tau_{z}^{2} = \tau_{0}^{2} \left[1 + \left(\frac{z}{\tau_{0}^{2} / d\omega^{2}} \right)^{2} \right]$$

Величина L_д- дисперсионная длина:

$$L_{\mathcal{A}} = \frac{\tau_0^2}{\left| \frac{d^{2\beta}}{d\omega^2} \right|}$$

Поэтому:

$$\tau_{Z}^{2} = \tau_{0}^{2} \left[1 + (\frac{Z}{L_{g}})^{2} \right]$$

Отсюда следует, что и для нормальной и аномальной дисперсий ход зависимости длительности импульса от расстояния одинаков при одинаковых дисперсионных длинах.

11.

При $L = \frac{1}{\gamma P}$ ширина спектра возрастает примерно в два раза. Ширина спектра возрастает в 4 раза на длине

$$L = \frac{2}{\gamma P}$$

$$\gamma = \frac{n_2 \omega}{cS} = \frac{n_2 k}{S} = \frac{2\pi n_2}{\lambda S} = \frac{10^{-20} \times 6,28 \times 2,8}{1550 \times 10^{-9} \times 75 \times 10^{-12}} = \frac{17,58}{11,625} \approx 1,5Bm^{-1}\kappa m^{-1}$$

$$L = -\frac{2}{\sigma^2} \approx 1.3 \kappa m^{-1}$$

$$\dot{L} = \frac{2}{1,5 \times 1} \approx 1,3 \kappa M$$

$$N^{2} = \frac{\tau_{0}^{2} \gamma P_{0}}{\left| \frac{d^{2\beta}}{d\omega^{2}} \right|} = 1$$

Отсюда,

$$P_0 = \frac{\left| \frac{d^{2\beta}}{d\omega^2} \right|}{\tau_0^2 \gamma}$$

$$\gamma = \frac{n_2 \omega}{cS} = \frac{n_2 k}{S} = \frac{2\pi n_2}{\lambda S} = \frac{10^{-20} \times 6,28 \times 2,8}{1550 \times 10^{-9} \times 75 \times 10^{-12}} = \frac{17,58}{11,625} \approx 1,5Bm^{-1}\kappa m^{-1}$$

$$P_0 = \frac{| / d\omega^2 |}{\tau_0^2 \gamma} = \frac{25 \times 10^{-21}}{(90)^2 \times 10^{-24} \times 1,5} = \frac{25}{81 \times 10^2 \times 1,5} = 10^{-2} \times 0,2 = 2 \times 10^{-3} Bm = 2 MBm$$

13. На входе в волокно скорость передачи информации равна:

$$B = \frac{1}{2\tau_0} = \frac{1}{2 \times 10 \times 10^{-12}} = \frac{10^{12}}{20} = 50 \ \Gamma \text{GWT}/c$$

При распространении по световоду импульс за счет дисперсии будет расширяться. Длительность импульса на расстоянии Z будет равна:

$$\tau_{Z}^{2} = \tau_{0}^{2} \left[1 + (\frac{Z}{L_{a}})^{2} \right]$$

где

$$L_{\mathcal{A}} = \frac{\tau_0^2}{\left| \frac{d^{2\beta}}{d\omega^2} \right|} = \frac{(10 \times 10^{-12})^2}{2 \times 10^{-24}} = 50 \kappa M$$

По условию задачи:

$$\frac{1}{2\tau_z} = 20 \times 10^9; \ \tau_z = \frac{1}{2 \times 20 \times 10^9} = 0.025 \times 10^{-9} = 25 \text{ nc}$$
$$\frac{\tau_z^2}{\tau_0^2} = 1 + \left(\frac{Z}{L_g}\right)^2; \ \left(\frac{Z}{L_g}\right)^2 = \frac{\tau_z^2}{\tau_0^2} - 1 = \frac{25^2}{10^2} - 1 = 5.25; \ \frac{Z}{L_g} = \sqrt{5.25}$$
$$\approx 2.3$$

$$Z = 2,3 \times L_{Д} = 2,3 \times 50 = 115$$
км

14.

Зная, что

$$P = P_0 e^{(-\alpha Z)}$$
$$\frac{dP}{dZ} = -\alpha P_0 e^{(-\alpha Z)}$$

Получаем

$$\alpha = \frac{-\frac{dP}{dZ}}{P_0 e^{-\alpha Z}} = \frac{\Pi omepu}{\Pi powedwas} \frac{Mowhocmu}{no} \frac{Ha}{cbemobody} \frac{eduhuuy}{mowhocmb} \frac{duhuuy}{Mowhocmb}$$

15.

Коэффициент ненасыщенного усиления

$$G_{R} = \exp(g_{R}(\lambda_{\text{сигн}}) \times P_{\text{нак}} \times L_{\Rightarrow \phi \phi} / s)$$

Определим длину волны накачки

$$V_{_{HAK}} = V_{_{CUZH}} + 13Tzu$$

$$V_{_{CUZH}} = \frac{c}{\lambda_{_{CHTH}}} = \frac{3 \times 10^8}{1,55 \times 10^{-6}} = 1,94 \times 10^{14} \Gamma u$$

$$V_{_{HAK}} = 1,94 \times 10^{14} \Gamma u + 13 \times 10^{12} = 2,07 \times 10^{14} \Gamma u$$

$$\lambda_{_{HAK}} = \frac{c}{V_{_{HAK}}} = \frac{3 \times 10^8}{2,07 \times 10^{14}} = 1,45 \text{MKM}$$

Коэффициент комбинационного усиления g_R обратно пропорционален длине волны накачки, поэтому в нашем случае

$$g_R(\lambda_{cuen}) = \frac{10^{-13}}{1,45} = 0,7 \times 10^{-13} \, \text{m/Bm}$$

Из-за поглощения волны накачки в выражение коэффициента усиления G_R вместо длины световода L входит эффективная длина $L_{э \varphi \varphi}$

$$L_{\phi\phi\phi} = \frac{1}{\alpha_{_{HAK}}} = \left[1 - \exp(-\alpha_{_{HAK}}L)\right]$$

Где $\alpha_{_{нак}}$ - линейный коэффициент поглощения на длине волны накачки, в нашем случае на $\lambda_{_{нак}} = =1,45$ мкм

По графику зависимости потерь от длины волны в кварцевых световодах определяем логарифмический коэффициент поглощения на $\lambda = 1,45$ мкм - α (1,45) = 0,25 дБ/км.

$$-10\log \frac{P_l(1\kappa M)}{P_0} = 0,25$$

$$\log \frac{P_{l}(1\kappa m)}{P_{0}} = -0,025$$
$$\frac{P_{l}(1\kappa m)}{P_{0}} = 0,94$$
$$P_{l} = P_{0} \times e^{-\alpha l}$$
$$\frac{P_{l}}{P_{0}} = e^{-\alpha l} = 0,94$$
$$-\alpha L = \ln(0,94)$$
$$-\alpha L = -0,06$$
$$\alpha = \frac{0,06}{L} = \frac{0,06}{10^{3}} = 6 \times 10^{-7} \, cm^{-1}$$

Определим L_{эфф}

$$L_{s\phi\phi} = \frac{1}{6 \times 10^{-5}} \times [1 - \exp(-6 \times 10^{-5} \times 5 \times 10^{3})] = \frac{1}{6 \times 10^{-5}} \times [1 - \exp(-0,3)] = \frac{1}{6 \times 10^{-5}} (1 - 0,74) = 0,17 \times 10^{5} \times 0,26 = 4,4\kappa_{M}$$

Таким образом,

$$G_{R}(1,55) = \exp(0,7 \times 10^{-13} \times 1 \times 4,4 \times 10^{3} / 50 \times 10^{-12}) = \exp(\frac{3 \times 10^{-10}}{50 \times 10^{-12}}) = \exp(\frac{3 \times 10^{2}}{50}) = 403$$

10 log $G_{R} = 10 \log 403 = 26 \square 6$
16.

Пороговая мощность накачки Р_{кр} при генерации ВКР из шумов и одинаковым направлением сигнала и накачки определяется на основании следующего выражения:

$$\frac{g_{R}(\lambda_{\text{сигн}}) \times P_{\kappa p} \times L_{\rho \phi \phi}}{S} = 16, om \kappa y \partial a$$
$$P_{\kappa p} = \frac{16 \times S}{g_{k}(\lambda_{\text{сигн}}) \times L_{\rho \phi \phi}}$$

Известно, что коэффициент комбинационного усиления g_R обратно пропорционален длине волны накачки. Поэтому в нашем случае

$$g_R(\lambda_{curn}) = \frac{10^{-13}}{1,45} = 0,7 \times 10^{-13} \, \text{M} \,/ \, Bm$$

Из-за поглощения волны накачки в выражение $P_{\kappa p}$ вместо длины волны световода L входит эффективная длина $L_{_{3\phi\phi}}$

$$L_{s\phi\phi} = \frac{1}{\alpha_{_{Ha\kappa}}} = \left[1 - \exp(-\alpha_{_{Ha\kappa}}L)\right],$$

Где $\alpha_{_{нак}}$ - линейный коэффициент поглощения на длине волны накачки, в нашем случае $\lambda_{_{нак}} = 1,45$ мкм

Из выражения для $L_{_{3\phi\phi}}$ следует, что при малых L , $L_{_{3\phi\phi}} = L$, а при больших L $L_{_{3\phi\phi}} = \frac{1}{\alpha_{_{na\kappa}}}$

По графику зависимости потерь от длины волны в кварцевых световодах определяем логарифмический коэффициент поглощения на λ = 1,45 мкм - α (1,45) = 0,25 дБ/км

$$-10\log \frac{P_{l}(1\kappa m)}{P_{0}} = 0,25$$
$$\log \frac{P_{l}(1\kappa m)}{P_{0}} = -0,025$$
$$\frac{P_{l}(1\kappa m)}{P_{0}} = 0,94$$
$$P_{l} = P_{0} \times e^{-\alpha l}$$
$$\frac{P_{l}}{P_{0}} = e^{-\alpha l} = 0,94$$
$$-\alpha L = \ln(0,94)$$
$$-\alpha L = -0,06$$
$$\alpha = \frac{0,06}{L} = \frac{0,06}{10^{3}} = 6 \times 10^{-7} \, cm^{-1}$$

Определим $L_{_{}^{}\phi\phi}$

$$L_{s\phi\phi} = \frac{1}{6 \times 10^{-5}} \times [1 - \exp(-6 \times 10^{-5} \times 15 \times 10^{3})] = \frac{1}{6 \times 10^{-5}} \times [1 - \exp(-0.9)] =$$

= 16,7 × 10³ × (1 - 0,4) = 16,7 × 10³ × 0,6 *m* = 10 *km*
$$P_{\kappa p} = \frac{16 \times 50 \times 10^{-12}}{0,7 \times 10^{-13} \times 10^{4}} = 1,1 Bm$$

Величину поля Е определим на основании выражения $I = \frac{1}{2} \varepsilon_0 cn |E|^2$, где $I = P_{\kappa p} / S$ – интенсивность, $\varepsilon_0 = \frac{1}{36\pi} \times 10^{-9} \frac{A \times C}{B \times M}$ – электрическая

постоянная, с- скорость света, n – показатель преломления

$$|E| = \left(\frac{2P_{xp}}{S \times \varepsilon_0 \times c \times n}\right)^{1/2} = \left(\frac{2 \times 1.1}{50 \times 10^{-12} \times (1/36\pi) \times 10^{-9} \times 3 \times 10^8 \times 1.5}\right) = 3 \times 10^6 B / M = 3 \times 10^4 B / cM$$

Определим длину волны стоксова сигнала: Частота сигнала Uсигна равна

$$\begin{aligned}
\nu_{cu2H} &= \nu_{hak} - 13T_{2}\mu \\
\nu_{hak} &= \frac{c}{\lambda_{hak}} = \frac{3 \times 10^{8}}{1,45 \times 10^{-6}} = 2,07 \times 10^{14} \,\Gamma\mu \\
\nu_{cu2H} &= 2,07 \times 10^{14} - 13 \times 10^{12} = 1,94 \times 10^{14} \,\Gamma\mu \\
\lambda_{cu2H} &= \frac{c}{\nu_{hak}} = \frac{3 \times 10^{8}}{1,94 \times 10^{14}} = 1,55 \,\text{MKM}
\end{aligned}$$

17.

Порог генерации ВРМБ $P_{\kappa p}$ определяется из следующего выражения

$$\frac{g_{\rm B} \times P_{\rm KP} \times L_{\rm spp}}{S} = 21$$

$$P_{\rm KP} = \frac{21 \times S}{g_{\rm B} \times L_{\rm spp}} = \frac{21 \times 50 \times 10^{-12}}{5 \times 10^{-11} \times 20 \times 10^3} \cong 10^{-3} \text{BT} = 1 \text{MBT}$$

Величину поля Е определим на основании выражения

$$I = \frac{1}{2} \varepsilon_0 cn |E|^2, где I = \frac{P_{\rm KD}}{S} - интенсивность$$
$$\varepsilon_0 = \left(\frac{1}{36\pi}\right) \times 10^{-9} \frac{A \cdot c}{B \cdot M} - электрическая постоянная$$

с – скорость света;

n – показатель преломления.

$$|E| = \left(\frac{2P_{\rm KP}}{S\varepsilon_0 cn}\right)^{1/2} = \left(\frac{2 \times 10^{-3}}{50 \times 10^{-12} \times \left(\frac{1}{36\pi}\right) \times 10^{-9} \times 3 \times 10^8 \times 1.5}\right)^{1/2} = 10^5 \,{\rm B}_{\rm M} = 10^3 \,{\rm B}_{\rm CM}$$

18.

Поскольку выполняется условие фазового синхронизма, то коэффициент усиления *G* определяется выражением

$$G = \frac{1}{4} e^{2\gamma P_H L_{adag}}$$

Анализ показывает (см. зад. 15), что в нашем случае $L_{3\phi\phi} = 500$ м. Отсюда,

$$G = \frac{1}{4}e^{2 \times 11 \times 1,4 \times 0,5}$$

G=10⁶; 10 *lgG* = 60 дБ

19.

Поскольку Δβ-малая величина, то для четырехволнового усиления применима формула:

$$G = (\gamma P_H L_{_{3\phi\phi}})^2 = (10 \times 1 \times 10)^2 = 10^4$$

$$G = 10 lg 10^4 = 40$$
дБ.

20.

Уравнение, связывающее длину волны λ и период фазовой решетки Λ , имеет вид: $\lambda = 2n\Lambda$ Отсюда,

$$\Lambda = \frac{\lambda}{2n}$$

$$\Lambda = \frac{1080 \times 10^{-9}}{2 \times 1,46} \approx 370 \times 10^{-9} \,\text{m} = 0,37 \,\text{mkm}$$

$$\Lambda = 0,37 \,\text{mkm}$$